Back to Bayesian Statistics

stars

760 ratings

•

246 reviews

This course describes Bayesian statistics, in which one's inferences about parameters or hypotheses are updated as evidence accumulates. You will learn to use Bayes’ rule to transform prior probabilities into posterior probabilities, and be introduced to the underlying theory and perspective of the Bayesian paradigm. The course will apply Bayesian methods to several practical problems, to show end-to-end Bayesian analyses that move from framing the question to building models to eliciting prior probabilities to implementing in R (free statistical software) the final posterior distribution. Additionally, the course will introduce credible regions, Bayesian comparisons of means and proportions, Bayesian regression and inference using multiple models, and discussion of Bayesian prediction.
We assume learners in this course have background knowledge equivalent to what is covered in the earlier three courses in this specialization: "Introduction to Probability and Data," "Inferential Statistics," and "Linear Regression and Modeling."...

RR

Sep 20, 2017

Great course. Difficult to apprehend sometimes as the Frequentist paradigm is learned first but once you get it, it is really amazing to see the believe update in action with data.

GH

Apr 9, 2018

I like this course a lot. Explanations are clear and much of the (unnecessarily heavyweight) maths is glossed over. I particularly liked the sections on Bayesian model selection.

Filter by:

By Aleix D

•Mar 19, 2019

Too many formulas... More examples would be nice.

By Minas-Marios V

•Apr 26, 2017

Honestly, I find it very hard to recommend this course to anyone. First of all, let's note that the course covers quite more advanced topics than the previous 3 courses in the specialization, so some extra difficulty is to be expected. However, the main problem I encountered was with the video lectures themselves, particularly during the 3rd and 4th week of the course. The instructor does a very rushed job at explaining everything, constantly giving us tons of information and jargon that is not previously mentioned, and even the examples fail to give us insight at what we need to do and why.

Other than the lectures, no external material is given to help us decipher what the professors are saying, other than a few Wikipedia links. I'm not saying that each course should be accompanied by an e-book, but honestly, if I wanted to learn about Bayesian Statistics from Wikipedia I could have well skipped this class.

The main reason I'm giving 2 stars to the course instead of 1 is the Labs and the Quizzes. Even though they could use some polishing too, especially the final Lab, they are indeed very helpful and do a much better job at clarifying the concepts presented.

All in all, I feel that if you want to learn about Bayesian Statistics you should look for another course, and/or save your money and get yourselves a good textbook.

By Deepthi R

•May 18, 2020

This course could have been so much more, but sadly, it wasn't. The first 3 courses in this series were absolutely brilliant. However, this course falls way short on expectations. In comparison to the very thoughtful explanation and pace of the first 3 courses, this course introduced a giant leap in self learning requirements and overall challenges. It seems to be very out of touch with what it touts to offer - an introductory course in Bayesian Statistics to learners. It questioned us on topics which hadn't been introduced yet. This is the only course in the series where I didn't learn any statistics, and just tried to out-game the quizzes and assignments.

By Shannon

•Aug 27, 2019

The material was rushed and did not provide enough examples for a beginner to understand.

By Matthew C

•Jul 25, 2020

This course is absolute garbage. Halfway through week 3 nothing makes sense anymore. They switch up the teachers on you and start throwing massive formulas in your face with huge chunks of R code that only use functions made specifically for this course that act like black boxes where I have no idea what they're doing. The instructional content is all super old and doesn't even make sense. Their R package doesn't even work anymore, they have all kinds of grammatical errors and typos in the videos and written materials, and none of the lessons feel like they build on information from previous lessons.

I'm really interested in Bayesian statistics and have a strong stats background and this course has only made me more confused than before I started. I've never been so frustrated with a course (online or in person) in my entire life. Don't waste your time or money.

By Shivang S

•Jun 18, 2020

Unlike the 3 prior courses in this specialization, Bayesian Statistics is not taught well at all. I had the following issues with the course: (1) The course book is full of typos making it frustrating to read (2) You are expected to understand lots of statistical jargon that is not introduced in prior courses or even explained well in the course that it is being used in (3) The lessons are not contextualized into how these techniques are applied to the real world.

It's disappointing to go through 3 courses that were taught extremely well by Professor Mine Çetinkaya-Rundel only to end it on a course like this which seemed to be half-baked and speedily covered. There may be other courses on Bayesian Statistics on Coursera that teach this increasingly important field better.

By Alexander C

•Jul 16, 2020

Taking this course was honestly a really upsetting experience.

Starting in week 3 the instructor you are used to gets swapped out for someone who simply cannot communicate concepts or ideas. Your only options will be to either start gaming the quizzes or find external resources to figure out what is going on. Even in the latter case, the course expects you to use their own custom functions in R for the assignments. They no longer maintain the course or their R library and some of the function were incomplete to begin with. Anyway, even when you fight your way through it and then wait days for the peer reviews to come in, you will try to finally move on to the capstone project just to find it locked until some arbitrary start date set one to two months in the future.

By Syed S R

•Sep 13, 2018

I want to give 0 ratings. The worst course I have seen so far in Coursera. Horrible planning, horrible execution and makes no sense. Totally disappointed by the style of course design and delivery

By vacous

•Jun 6, 2017

The professors tried to put too much material into very short videos.

The result is that most of the material are explained unclearly.

By Daniel R

•Jun 14, 2017

they didn't tell that this course didn't have a homework, reading, or practice problems to do. Ended up s

By Minasian V

•Aug 16, 2016

This course was the most challenging one among all courses in specialization. I wish there were more explonation of how we get smth from smth and not like " and it appears to be equal .." and so on.

I also had to watch Ben Lambert's bayesian course on YouTube to understand the material of the second week,because Prof. David Banks was not good enough in explanation.

Assistant Prof. Mine Çetinkaya-Rundel has an amazing teaching skills.

Prof. Merise Clyde is good in explonations and I understand that she tried to present a very complicated material in a simple way, but as I have already mentioned above, I wish there were more explonations of casuality of the formulas with examples and Intuition that stands behind these formulas like in Ben Lambert's videos.

Many thanks for such an amazing experience.

By Andrea P

•Nov 12, 2016

Very interesting and formative. It starts from the basics (Bayes' theorem) but then it goes beyond the usual conjugate models such as Beta-binomial and Gamma-Poisson. Bayesian Linear Regression, Bayes Factors, Bayesian Model Averaging and a brief introduction to MCMC are provided. This really put me in the position of applying Bayesian Statistics to some real world application: the final test case is a good illustration. The only minus is that the part on Bayesian Hypothesis Testing (in particular Bartlett's and Lindley's paradoxes) is a bit rushed up, and not as clear as the rest of the course. All in all, a really good course, I'm glad I followed it.

By Do H L

•Jul 9, 2016

I beta-tested this course and it was an amazing experience. The instructors are super engaging and upbeat, despite having to delivery a very complex subject like Bayesian statistics. The quizzes are very rich, with a nice balance of practice quizzes and graded quizzes. The practice quizzes offer very helpful explanations that can help to reinforce understanding before doing the graded quiz. Last but not least, the final project description is super exciting and thorough. I highly look forward to completing this course and get a deep introduction to Bayesian statistics.

By Xueyi S

•Sep 7, 2020

I appreciate that the course materials contained a lot of practises and readings. Clearly the course organisers did not want to compromise the volume and difficulty of materials for popularity. The materials were concise and clear. A tangible sign of progress is that I can now understand some recent studies using Bayesian methods. It has given me a good start of learning more advanced Bayesian techniques.

By YOUNES E

•Nov 12, 2020

this course is one of the best course in Coursera.

I learned a lot about Bayesain statistics, although the content is difficult, but it is presented in the simplest way possible, so in order to complete this course, you must adhere to what the supervisors say about this course.

By Jonathan N

•Oct 22, 2016

Outstanding material. It may be the hardest level compared to the rest specialization course, since Bayes indeed have high technical level detail. But it was worth it. Great course and detailed from the instructors.

By Nazir A

•Sep 20, 2019

Excellent coverage. Needed to read up before watching the video in order to be able to follow the concepts. Topic was covered extensively and I was able to learn a whole new way of looking at statistics in general.

By Andre G L O

•Feb 5, 2017

For sure the most challenging course so far.

I'm amazed by how our statistical intuition fits with Bayesian approach and how we can get better results.

I'm eager to use this concepts in new models at my job!

By Graeme H

•Apr 10, 2018

I like this course a lot. Explanations are clear and much of the (unnecessarily heavyweight) maths is glossed over. I particularly liked the sections on Bayesian model selection.

By Diego E E T

•Jul 22, 2021

I tried this course without completing the previous ones. I had some challenge learning the R lenguage but the teorethical contents are very clear. Definitely woth the time.

By Lucia M

•May 27, 2020

Es un curso muy difícil de seguir si no tienes amplios conocimientos de estadística y probabilidad. Nada que ver con los anteriores de esta especialización.

By 魏震

•Nov 16, 2016

Very nice introduction to bayesian statistics, the materials have some level of depth, and the tests and assignments are highly available for beginners.

By Shao Y ( H

•Oct 30, 2017

The course is compact that I've learnt a lot of new concepts in a week of coursework. A good sampler of topics related to Bayesian Statistics.

By 殷子涵

•Jan 6, 2017

This course is very good for bayesian statistic theory. What is more, it also teaches a lot of coding skills with R which is really useful.

By Raffy S C

•Mar 22, 2020

Great course. Quite difficult though. I wished it was split to two course or maybe an entire specialization dedicated for this.

- Google Data Analyst
- Google Project Management
- Google UX Design
- Google IT Support
- IBM Data Science
- IBM Data Analyst
- IBM Data Analytics with Excel and R
- IBM Cybersecurity Analyst
- Facebook Social Media Marketing
- IBM Full Stack Cloud Developer
- Salesforce Sales Development Representative
- Salesforce Sales Operations
- Soporte de Tecnologías de la Información de Google
- Certificado profesional de Suporte em TI do Google
- Google IT Automation with Python
- DeepLearning.AI Tensorflow
- Popular Cybersecurity Certifications
- Popular SQL Certifications
- Popular IT Certifications
- See all certificates

- Skills for Data Science Teams
- Data Driven Decision Making
- Software Engineering Skills
- Soft Skills for Engineering Teams
- Management Skills
- Marketing Skills
- Skills for Sales Teams
- Product Manager Skills
- Skills for Finance
- Android Development Projects
- TensorFlow and Keras Projects
- Python for Everybody
- Deep Learning
- Excel Skills for Business
- Business Foundations
- Machine Learning
- AWS Fundamentals
- Data Engineering Foundations
- Data Analyst Skills
- Skills for UX Designers

- MasterTrack® Certificates
- Professional Certificates
- University Certificates
- MBA & Business Degrees
- Data Science Degrees
- Computer Science Degrees
- Data Analytics Degrees
- Public Health Degrees
- Social Sciences Degrees
- Management Degrees
- Degrees from Top European Universities
- Master's Degrees
- Bachelor's Degrees
- Degrees with a Performance Pathway
- Bsc Courses
- What is a Bachelor's Degree?
- How Long Does a Master's Degree Take?
- Is an Online MBA Worth It?
- 7 Ways to Pay for Graduate School
- See all degrees